The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor Francesca Spinella1,Valentina Caprara1, Roberta Cianfrocca1, Laura Rosanò1, Valeriana Di Castro1, Emirena Garrafa2,
نویسنده
چکیده
Reciprocal growth factor exchanges between endothelial and malignant cells within the hypoxic microenvironment determine tumor progression. However, the nature of these exchanges has not yet been fully explored. We studied the mutual regulation between endothelial cells (EC), melanoma cells and hypoxia that dictate tumor aggressiveness and angiogenic activity. Here, we investigated the presence of bidirectional autocrine/paracrine endothelin (ET)-1/ET receptor (ETBR) signaling in melanoma cells, blood and lymphatic EC. In all these cells, hypoxia enhanced ET-1 expression, which in turn induced vascular endothelial growth factor (VEGF)-A and VEGF-C secretion, through the hypoxia-inducible growth factor (HIF)-1α and HIF-2α. Autocrine/paracrine exchanges of ET-1, VEGF-A and VEGF-C promoted tumor aggressiveness and morphological changes in blood and lymphatic EC. Furthermore, conditioned media from EC enhanced melanoma cell migration and vessel-like channel formation. This regulation was inhibited by ETBR blockade, by using the selective ETBR antagonist, or ETBR small interfering RNA (siRNA), and by VEGFR-2/-3 antibodies, indicating that ET-1, VEGF-A/VEGF-C, produced by melanoma cells or EC mediated inter-regulation between these cells. Interestingly, HIF-1α/HIF-2α siRNA, impaired this reciprocal regulation, demonstrating the key role of these transcriptional factors in signaling exchanges. In melanoma xenografts, the ETBR antagonist reduced tumor growth and the number of blood and lymphatic vessels. These results reveal an interplay between melanoma cells and EC mediated by ET-1 and VEGF-A/-C and coordinated by the hypoxic microenvironment through HIF-1α/2α transcriptional programs. Thus, targeting ETBR may improve melanoma treatment for tumor and EC, by inhibiting autocrine/ paracrine signaling that sustains melanoma progression.
منابع مشابه
The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor.
Reciprocal growth factor exchanges between endothelial and malignant cells within the hypoxic microenvironment determine tumor progression. However, the nature of these exchanges has not yet been fully explored. We studied the mutual regulation between endothelial cells (EC), melanoma cells and hypoxia that dictate tumor aggressiveness and angiogenic activity. Here, we investigated the presence...
متن کاملEndothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade.
The lymphatic vasculature is essential for tissue fluid homeostasis and cancer metastasis, although the molecular mechanisms involved remain poorly characterized. Endothelin-1 (ET-1) axis plays a crucial role in angiogenesis and tumorigenesis. Here, we first report that ET-1 acts as a lymphangiogenic mediator. We performed in vitro and in vivo studies and show that lymphatic endothelial cells p...
متن کاملEndothelin-1 Inhibits Prolyl Hydroxylase Domain 2 to Activate Hypoxia-Inducible Factor-1α in Melanoma Cells
BACKGROUND The endothelin B receptor (ET(B)R) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1alpha is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and sub...
متن کاملEndothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells.
Endothelin (ET) B receptor (ET(B)R), which is overexpressed in human cutaneous melanomas, promotes tumorigenesis upon activation by ET-1 or ET-3, thus representing a potential novel therapeutic target. Hypoxia-inducible factor-1alpha (HIF-1alpha) is the transcriptional factor that conveys signaling elicited by hypoxia and growth factor receptors. Here, we investigated the interplay between ET a...
متن کاملNuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression
Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ET(A) receptor (ET(A)R)-induced pathway physically and functionally couples ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014